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In a radar system, it is necessary to measure both range and velocity of a target. The

movement of the target causes a Doppler shift of the radar signal, and the size of the

Doppler shift is used to measure the velocity of the target. In this work, I simulate a

chaotic drive-response system which detects a Doppler shift in a chaotic signal. The

response system can detect Doppler shifts in more than one signal at a time.
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Both radar and sonar systems transmit a signal which is reflected from an

object, and the reflected signal is detected by a receiver. The round trip time

(transmit-reflect-receive) is used to measure the distance to the object. The

resolution with which distance can be measured is increased by increasing the

bandwidth of the signal, which suggests the use of broad band chaotic signals.

If the object is moving toward or away from the receiver, the received signal

is also Doppler shifted. The Doppler shift is proportional the velocity of the object.

Some types of chaotic systems may be synchronized to each other by sending

a signal from a drive system to a response system. The response system is arranged

so that it synchronizes to the drive system. While in some cases synchronization

means that the response system does the same thing as the drive system, in the work

described here only the phase of the response system synchronizes to the drive



system. When the driving signal is Doppler shifted, the response system phase

synchronizes to this Doppler shifted signal. A frequency reference signal is also

maintained in the response system, so the size of the Doppler shift may be measured

by comparing the response system frequency to the frequency reference.

INTRODUCTION

In the fields of radar and sonar, transmitted signals that are reflected from objects

are used to determine the distance to and radial velocity of those objects [1]. Usually,

periodic signals or combinations of periodic signals have been used for these

applications, but other types of signals such as noise or chaos have also been explored.

Chaotic signals may have a large bandwidth, which is useful in increasing the precision

with which distances may be measured. To understand this principle, think of a pulse or a

wave packet: the more the wave packet is localized in time, the greater the spread of

frequencies used to create the wave packet The application of chaos to radar or sonar has

been considered by several groups [2-6]. To measure distance in radar, one actually

measures a delay time, so signals with broader bandwidths increase the precision with

which distance may be measured. The work so far on applying chaos to radar has been

concentrated on the properties of the chaotic waveform itself, either studying how the

broad bandwidth of chaos gives range resolution [7], or studying how chaotic waveforms

may be separated from other chaotic waveforms or interference [2-6]. In this paper, I

concentrate on the structure of the transmitter and receiver, rather than on the waveform

itself. I describe how the properties of a self synchronizing chaotic system may be used to

extract a Doppler shift from a chaotic signal without having a copy of the transmitted

signal for reference.



RADAR AND SONAR BASICS

Radar (or sonar) signals may also be used to measure the velocity of a target

towards or away from the observer [1]. The range to the target as a function of time is

R t( ) = R0 + vrt , where R0 is the initial range and vr is the radial component of the

velocity. Assuming the target velocity is much slower than the signal velocity (true for

radar), the transmitted signal at time t1 then travels a total path length of 2R(t1) , for a

phase change of 4!R t1( ) / " , where !  is the wavelength. The Doppler frequency is the

derivative with respect to time of this phase shift, which may be simplified to yield

fd =
2 f
c
vr                                                                     (1)

where f is the signal frequency fd is the resulting Doppler frequency, and c is the signal

velocity. Eq. (1) shows that if the transmitted signal contains many frequencies, then

there will also be many Doppler frequencies.

An ambiguity diagram is used to measure the ability of a radar signal to measure

delay and Doppler shift [1]. An ambiguity diagram represents the output of a matched

filter for the signal. A matched filter is a linear filter that given an input signal with

additive Gaussian noise, produces the optimum signal to noise ratio for that signal at the

output [8]. For a radar signal, taking the cross correlation between the transmitted and

received signals is mathematically equivalent to applying a matched filter to the received

signal. The function that is plotted for the ambiguity function is

! TR , fd( ) 2 = u t( )
"#

#

$ u* t + TR( )e2% jfd tdt
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                               (2)



where u(t) is the signal under consideration and TR is a time delay.

For a narrow band signal, a single Doppler frequency fd may be used in eq. (2),

but for a broad band signal, a band of frequencies defined by eq. (1) is necessary [7, 9].

To calculate the ambiguity function, the signal u(ti) is first Fourier transformed to

produce U(fj).  The subscripts i and j are used to indicate that a discreetly sampled signal

is used. The frequency components of U(fi) are shifted according to  
!fi = fi 1+ !( ) , where

" = vr/c . The product 
 
U fi( )U * !fi( )  is taken and inverse Fourier transformed to produce

|#(TR, ") |2, the wideband ambiguity function. In a following section I will plot an

ambiguity function for a particular chaotic signal is produced by a chaotic system I have

designed.

CHAOS FOR RADAR

There are several ways in which a self-synchonizing chaotic system may be

useful for radar. First, chaotic signals are broad band, so they have good range resolution.

A self synchronizing chaotic system can extract information without a stored reference

signal, so it might be useful for a bistatic radar system, on which transmitter and receiver

are at different locations. There are other reasons to use chaotic signals for radar, but they

are not considered in this paper.

The broad band nature of the chaotic signal does cause some difficulties for

estimating Doppler shifts. If the chaotic signal is digitized upon reception, then  one can

proceed as in the section above on measuring ambiguity diagrams, but it may be that a

completely analog receiver is necessary. In the common analog method to measure

Doppler shifts, the received signal is multiplied by a reference signal which has no

Doppler shift. The Doppler frequency fd appears as a difference frequency. If the same



procedure is attempted for the broad band chaotic signal, a broad band of difference

frequencies is produced, so it is not possible to read a single Doppler frequency. To

correct this problem, a chaotic response system was designed that converts the broad

band chaotic signal into a narrow band signal at a lower frequency.

CHAOTIC SYSTEM

DRIVE SYSTEM

The chaotic system used in this paper was based on a piecewise linear Rossler

system [10, 11]. This particular system has motion on 4 different time scales, so I call it

the 4-frequency piecewise linear Rossler system. The 4-frequency Rossler system is

based on the 2-frequency Rossler system.

The 2-frequency Rossler system was originally designed as a noise robust

communication system [10, 12]. The reason that the combination of a fast Rossler

oscillator and a slow damped periodic system is noise robust was studied in [13]. The

slow periodic system modulates the frequency of the fast Rossler system, so that the

combined system has a larger bandwidth than the Rossler system alone.

If one observes the output of the 2-frequency Rossler system for a short time, it

still looks like a narrow band system, since the frequency varies only slowly. It seemed

that a system which looked broad band even on short time scales might be more desirable

for radar or sonar, so the 4-frequency Rossler was designed to have a large instantaneous

bandwidth. The ambiguity diagram for the 4-frequency Rossler system shown below in

fig. 3 does have smaller range sidelobes than the ambiguity diagram for the 2-frequency

Rossler. It was shown in [13] that the noise robustness of the 2-frequency Rossler



depended on having a large ratio of the fastest to the slowest frequencies, so the 4-

frequency Rossler was designed with a large range of frequencies.

Figure 1 is a block diagram of the 4-frequency Rossler system. This system was

designed to have an output signal which was broad band, but whose bandwidth could

easily be controlled. The drive system was composed of a chaotic piecewise linear

Rossler system which drove 3 passive damped periodic systems. The 3 periodic systems

provided signals which varied the time scale of the chaotic Rossler system. The time

constants of the 3 periodic systems were chosen to be roughly incommensurate with each

other. The entire drive system was described by:



dx1
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dx2
dt

= !" d# x( )$1 !x1 ! 0.13x2( )
dx3
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where a1  = 1.0, a2 = 0.565, a3 = 0.1, and a4 = 0.051. The $ constants define the time

scales for the different parts of the system. The signal sx provides a phase and frequency

reference for the slowest part of the drive system, where %4 = 0.00575 Hz is the center

frequency of the x8-x9 part of the drive system for &d  = 1.0. The constant &d  is used to

slightly vary the overall time constant to simulate a Doppler shift. For no Doppler shift,

&d  = 1.0. The function !(x) varies the time scale of the chaotic system of x1-x3 .



Eqs. (3) is integrated with a 4th order Runge-Kutta integration routine with a time

step of 0.4 s. The signal x2 is extracted from eqs. (3) to use as a driving signal for the

response system. Figure 2 is a power spectrum of the x2 signal.

AMBIGUITY DIAGRAM FOR CHAOS

The maximum achievable time and frequency resolution for the signal x2 using a

matched filter can be seen by plotting the ambiguity diagram (fig. 3) for x2 , as defined by

eq. (2). The ambiguity surface is seen to have large sidelobes along the TR axis, so it is

not the ideal waveform for detecting the range to a target. The large sidelobes can

obscure closely spaced targets [1]. The ambiguity surface does not have any sidelobes

along the frequency shift axis, so it is useful for detecting Doppler shifts. To produce this

ambiguity diagram, a 40,000 point time series of x2 was used for the signal u(t). Figure 3

is a useful way to characterize the potential of the chaotic signal for measuring delays and

Doppler shifts..

RESPONSE SYSTEM

The response system was not identical to the drive system. The purpose of the

response system was to convert the broad band signal from the drive system into a

narrow band signal (at lower frequency) from which the Doppler shift could be measured.

Figure  4 is a block diagram of the response system. The response system was defined by
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$r y( ) = 1+ 0.05 y3 + y5 + 0.5( )

                                                     (4).

The $’s are the same as in eq. (3). The actual driving signal 'd is a sum of x2 from the

driving system and an interfering signal ( , which may be noise or another chaotic signal.

The function !r(y) varies the center frequency of the y1-y2 system.

The response system of eqs. (4) is not identical to the drive system of eqs. (3), so

it can’t exhibit exact synchronization; rather, it phase synchronizes to the drive system

[14]. It has been shown before that response systems with structures similar to eqs. (4)

can maintain good synchronization even when large amounts of noise (larger than the

drive signal) are added to the drive signal [10-13, 15].



As a Doppler detector, the response system is used to convert the broad band x2

signal to the much narrower band y7 signal. Since y7 is narrow, there is only one Doppler

frequency to find. The y7 signal is filtered to remove any DC offset, multiplied by a single

frequency reference signal sy, and filtered to produce a Doppler signal z2

sy = sin ! 4t( )
dz1
dt

= "
# 4

100.0
y7sy + z1( )

dz2
dt

=
dz1
dt

"10"5 z2

                                                             (5).

Figure  5 shows the power spectrum of y7 when the Doppler shift factor &d in eqs. (3) is

–0.99, 1.0, or 1.01. It can be seen that Doppler shifting the driving signal shifts the

frequency of y7 up or down. Figure 6 shows the Doppler signal z2 when the Doppler

factor &d = 1.01. The frequency of the Doppler signal is 5.75 ) 10*5  Hz, which is 1% of the

frequency of y7 , as is expected. A Doppler shift of 1% is actually much larger than

anything that would be seen in a radar signal (see eq. (1)), but the shift was made large in

order to shorten the simulation time. A 1% Doppler shift is less extreme for sonar.

INTERFERENCE EFFECTS

It is rare that only a single target is present to scatter a radar signal. The most

common types of interference in radar are reflections from other targets, which may be

moving or stationary [1]. Fixed objects, such as the ground or buildings, usually provide

reflections that are larger than the signal reflected from the target. The radar system must

be able to separate the target reflection from these different signals.

Figure 7 shows the Doppler signal z2 when a chaotic signal from eqs. (3) with no

Doppler shift (and different initial conditions) was added to x2 (which had a Doppler shift



of 1.01). The added signal had an amplitude 5 times the amplitude of x2 , or 25 times the

power. The Doppler peak corresponding to a 1% Doppler shift is still clearly visible in

Fig. 7. The Doppler signal z2 is produced in a way that produces no signal if no Doppler

shift is present, so there is no peak for the signal with no Doppler shift. It is frequently the

case in radar that one wants to detect only moving targets.

There may also be other moving targets reflecting the radar signal, and it would

be useful to be able to distinguish them Figure 8 shows the power spectrum of the

Doppler signal z2 when an interfering signal with a Doppler shift of 1.005 (and different

initial conditions) was added to x2. The amplitude of the interfering signal was 4 times the

amplitude of x2 , or 16 times the power.  Peaks corresponding to both signals can be seen

in Fig. 8, showing that both Doppler shifts were detected.

CONCLUSIONS

A self synchronizing chaotic system that could detect a Doppler shift in a chaotic

system was described. Similar types of systems have been built as analog circuits [10, 12,

15], so building this chaotic system would not be difficult.  Implementation of this idea at

microwave frequencies will have to wait for suitable high frequency chaotic circuits, but

such systems are being developed [16, 17]. It was also shown that the self-synchronized

chaotic response system also worked when simple but common types of interference

were added to the chaotic signal. Some theory has been studied on the origin of this

resistance to noise [13].



While this chaotic system detected a Doppler shift, it doesn’t detect the delay

between transmission and reception of a signal, which is necessary to determine the range

to a target. It was shown previously how to use control [15] or modulation [12]

techniques to impose information on a chaotic signal for a very similar type of chaotic

system, so such techniques could possible be used to add time coding signals to the

chaotic signal, allowing the determination of delay time. It is also possible that this

system could be used purely as a simple motion detector, since it produces an output

signal only when the received signal has been Doppler shifted.
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Fig. 1. Block diagram of drive system.
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Fig. 2. Power spectrum of the x2 signal from eqs. (3) The spectrum was generated

from a time series of 40,000 points sampled at 0.4 s/pt.



Fig. 3. Ambiguity function | # |2   as defined in eq. (2) for the signal x2. TR is the delay

time, while "  is the fraction by which the signal frequency is shifted. The diagram

was generated from time series of 4000 points sampled at 0.4 s/pt, but the time axis

of this plot covers only plus or minus 50 points.



Fig. 4. Block diagram of the response system
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Fig. 5. Power spectrum of the output signal y7 from eq. (4). The center line is the

power spectrum when no Doppler shift is present in the transmitted signal x2, the

left peak is the power spectrum when the Doppler shift factor is 0.99 ( or –1%) , and

the right peak is the spectrum when the Doppler shift factor is 1.01 (or +1%). The

time series for these spectra contained 40,000 points sampled every 50 integration

time steps, for 20 s/pt.
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Fig. 6. Power spectrum of the Doppler signal z2 from eq. (5) when the transmitted

signal has a Doppler shift of +1%. The time series for this spectrum contained

40,000 points sampled every 50 integration time steps, for 20 s/pt.
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Fig. 7. Power spectrum of the Doppler signal z2 from eq. (5) when an interfering

chaotic signal with no Doppler shift and 5 times the amplitude of the x2 signal is

added to the x2 signal, which has a Doppler shift of +1%. The time series for this

spectrum contained 40,000 points sampled every 50 integration time steps, for 20

s/pt.
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Fig. 8. Power spectrum of the Doppler signal z2 from eq. (5) when an interfering

chaotic signal with a Doppler shift of +0.5% and 4 times the amplitude of the x2

signal is added to the x2 signal, which has a Doppler shift of +1%. The time series

for this spectrum contained 40,000 points sampled every 50 integration time steps,

for 20 s/pt.


